SCIENCE

BULLETIN

CONTENTS,

```
Editorial . . . . . . . . . . . . ..Paga 1
Zoology Exam Fapor . . . . . . . . . . Page 2
"A
    at the University of ndelaide" - I . . Page 3
Do You Have a Spacc-ige Mind?. . . . . . . Page 5
For Maths Students. . . . . . . . . . . .Page 6
Crosswerd Corner . . . . . . . . . . Page 7
Solution to Crossword . ............Page }
On Toads and Politicians . . . . . . . . . . Page 8
```

The Bulletin Standing Committee:

```
Peter ishenden
Peter Liebich
Peter Crisp
Lachlan Peter
```

The Editor would like to thank Sandra Muirhead for the typing and running around in circles, Barry Salter for the printing, all the contributors, and all people who helped collate the bulletin.

PLEASE NOTE:

The next Bulletin will be published ofter this one.

EDITORIAL.

fit last! - The event you have all been waiting for has arrived: Publication of the second Bulletin of 1978. This is a special event for me, too, as this is the vory first editorial I'vo ever written. I'm sure you're eager for many more to come from my pen.

Now thet we are a couple of weeks in to second term most of you will be well on the road to recovery from those nasty exams. Mixod cries of lation and despain were reported from the Univursity of Adelaide as papers were handed back with marks. Howevor, now you can take it easy until nugust, when the next exams arrive.

Other events which this term has already seen are a talk by Mr. Tyler on our eld friend Bufo marinus (see later) and the AUSCA reorientation camp. Of the latter I can't say much, since last weekend is next weekend new. However, we should be able to bring you all the gory deteils in the next issue.

Dorft forget the exciting line-up for the next few weeks! On the 1 st of July there will be an AUSCA committco meeting for all members who need a bit of entertainment and on the 28 th of July is the gastronomicel event of the year, the nUSch annual Dinner.

In closing I would like to tell you that I have been up to my little toe in contributions for the Bulletin. However, any mora would be apprecicted. Thank you (in anticipation).

Peter ishenden (GM)
Assistant Editor.

This hot tip for the Zoology II exam arrived anonymously in my mailbox, unfortunately too late for it to be of use to Zoology II students. - Editor.

THE UNIVERSITY OF ADELAIDE
EXAMINATIONS FOR THE ORDINARY DEGREE OF B.A. AND B.Sc.

MAY 1978
ZOOLOGY II (SZO2)
FIRST TERM PAPER
Time: 3 hours
(In addition, candidates are allowed ten minutes before the exam begins to read the paper; ten minutes to say their prayers; ten minutes coffee break every ten minutes.)

Candidates must attempt all questions.

SECTION A

1. EITHER Discuss the philosophy behind Einstein's Theory of Relativity and its relation to modern parapsychology, cybernetics and relationships between crustacea and trilobites
QR Compare the effects of a foot or a large rock on any invertebrate.
2. Write an essay on the evolution of rock.
3. Urite notes on all of the following;
i) "Crustacea should be treated with respect, because of their diversity, carapace and appendages; they should not be eaten. It is sacrilege."
ii) Potential use of Millipedes in the Antarctic (instead of dogs) for pulling sleds.
iii) Relevance of poetry to modern zoology.
iv) Diversity of boy scout jokes.
v) The phylogenetic relationship between the exoskeleton and Red Skelton.
4. Describe the diversity of the Kingdom Animalia in 830,000 words or less.

SECTION B
5. Urite 30 boy scout jokes: marks will be given for comments on crustacea, DAD's lectures, sex. Porn is acceptable.
6. Write an essay.
7. Compare the locomotion of Onychophora with that of iuliform Diplopods and the Overland.
8. Write an essay on Radiolarians and compare their performance to cross-plys.

The presence of the woomera Rocket Range in South Australia placed the infant Space Age on the doorstep of Adelaide University. While refusing full duties of parenthood, the University took some interest in the child.

Professor J. H. Carver's establishment project, following appointment in 1961 to the Elder Chair of Physics at the University related to the laboratory study of photo reactions in the ultraviolet region of the spectrum with gases of the atmosphere and a parallel development of rocket borne sensors to study 'in situ', the effects of solar radiation in the same wavelength band in the upper atmosphere. A cooperative programme was arrived at with Mr. R. W. Boswell, Controller, Weapons Rescarch Establishment, whereby Professor Carver would have the assistance of the Flights Projects Group of the Weapons Reswarch Establishment, headed by Mr. Bryan Rofe while financial assistance was also given in the form of a grant from the Department of Supply.

The first experiments planned for the rocket programme involved the use of ion chambers of the type developed by Friedman et al. (1958) for measurement of the intonsity distribution with altitude of the solar Lyman $<$ line of atomic hydrogen. Due to the component constituents of the atmosphere the ponetration height of solar $u_{0} V_{0}$ is as shown in Figure 1 where it may be seen that O_{2} is the predominent absorber of the Lyman a line at 121.5 nm . By measurement of the absorption profile, the variation of number density of 02 with height could be obtained.

Hoight
Fig. 1. Height of 1^{-1}
attenuation of solar radiation by the atmosphere as a function of wavelength.

The rocket used in these first exporiments was the H.A.D. vehicle, a two stage solid fuel rocket developed by Flight Projects Group for making measurements of high altitude (total) density and winds employing the falling spher method (Malcolm, 1972).

The H.A.D. vehicle had a 5 inch diameter second stege with the payload at the forward end and could lift a 14 kg all up payload to 100 km . The vehicle performance was such that the instrumentation to be flown had to survive up to 3 seconds accaleration at some $50-709$ while vibration resulted in accelerations up to 109 covering a frequency range of 0 to 2 kHz . Temperature variations, due to acrodynamic hating of the skin and conduction to tho instrumontation, may range to $120^{\circ} \mathrm{C}$ during flight, increasing the design problems of the instrumentation. The rocket was also unstabilized and spin rates wore not easily predictable. This, coupled with limitations on data transmission rates, made the design of a new type of solar aspect sensor necessary for observation of solat tadiation intensities, imperative.

It is perhaps surprising in thesc days of intograted circuits of microscopic dimensions, to consider the manufacture of amplifiers accepting inputs of up to 500 mV with an input impedance 30 ME with stability of 0.7% of full scale over the range of conditions doscribed above, based on valves and individual transistors and other components, but this work was successfully arried out by Dr. E. L. Murray, F. Stevenson and J. Mofadyen who formed the electronics section of the group.

The design, testing and calibration of the ion chambers were carried out by Dr. P. Mitchell. A number of small problems had to be overcome and a range of ancilliary equipment produced. Recalling that the whole experiment had to go to the range, be finally checked thore before flight and then flown fully selfocontained, it is not hard to imagine the new procedures that had to be developed. The whole operation was besed on materials available; for example, battery packs to supply power to the experiments during flight were those available in the supermarkets, not special items of the "new space age". Fuller descriptions of the items are recorded (Mitchell, 1966).

The culmination of this work came at 0930 cst December 6, 1963 when HAD 301 was fired from the woomera range. The instrumentation carried was two Lyman \% ion chambers, an altitude camera and sunslits for aspect sensing and associated electronics, modulators and telemetry transmitters. The rocket reached an altitude of 88 km and all systems operated correctly. The first results of these measurements of O_{2} densitics, probably the first in tho Southern Hemisphere, appeared in 1964 (Carver et al., 1964). HAD 302 suffered a structural failure and HAD 304 was successful, with the inclusion of the Adelaide designed solar aspect sensors, reaching an altitude of 91.1 km 。

In 1965 the Australian Research Grants Committee provided funds for support of the rocket programe. These proved invaluable in extending the range of materials and components available for consideration in design and opened opportunities for increasing the technicel support.

While the Lyman o HAD project was proceeding two parallel projects were under way. It was known that, above the mesopause, the photochemistry of the atmosphere bocame more complex with the level of dissociation of molecular oxygen increasing but fow quantitative results were available for these altitudes, while in the mesosphere itself the chemistry of ozone in absence of solar radiation was the subject of theory but no measuroments had been made.

Ion chamburs with differont windows and gas or vapour fillings provided spectrally sensitive detectors and tho spectral bands in combination

- covered a range of some two ord.rs of magnitudi in the size of absorption cross section of molecular oxygen. A number of differont types of ion chambers wore mado and thir characteristics determined (Carver and Mitchell 1964) and a Long Tom rocket (Malcolm 1972) was prepared for them. The payload was also to carry soft X-ray detectors to enable measurement of total atmosphoric density. At the same time a report in the literaturc (Heddle, 1962) suggested that noar ultra-violet radiation reflected from the moon was detectable. Ozone is a strong absurber in the wavelength range 220 to 290 nm and, while insufficient to be photochemically active, lunar radiation could be used by absorption measurement to give ozone densities at night. Photometers were designed to detuct the low fluxes expected (10^{-11} -10^{-12} watts $\mathrm{cm}^{-2} \mathrm{~nm}^{-1}$) employing intorferonce filters and the 1 p 28 photomultiplier. This detector, while no way ruggedised for the harsh environment planned for it, was found to survive ground acceleration and vibration tests providing the high tension was not applied during the period of motor burn. Both these projects came to fruition (Carver et al.,1967), (Carver et al. 1969).

During this period some changes had occurred in the staff. Dr. Murray and J. Mcfadyen had left the group while S. Dowden, R. Hurn, A. Robertson and A. Suskin had joined. Professor K. McCrocken had been appointed to the Department and had taken an interest in use of rockets for X-ray astronomy. While the Australian vehicles available wro unsuited for the tasks envisaged space was made available on UKSRC Skylark vehicles. Working with investigators from the Department of Physics, University of Tasmania, X-ray proportional countors were integrated into en instrumentation package, which, with some modification, was flown on two UKSRC Skylark vehicles from woomera. These flights contributed considerably to the knowledge of variations in the observed flux of X-ray stars (Francey et al.s 1967). The development of rocket instrumentation for X-ray studies over this period is described by Francey et al., (1969).

This article will bu continued in the next issue.

This quiz, by Grace and Larry Spruch, was presented in all soriousness by the Reader's Digest periodical.

The answers will be printed in the next bulletin.

1. The Theorem of Pythagoras states that (A) in any triangle the square of the longest side equels the sum of the squares of the other sides (B) in any triangle the squere of the longest side equals the square of the sum of the othor sides (C) in a right triangle the square of the hypotenuso oquals the sum of tho squares of the other sides (D) in an isosceles triangle the third side equals the sum of the two equal sides.
2. Thirtcen thousend million yeers corrosponds most closuly to the prosumed (A) age of the universe (B) age of oarth (C) time since the dinosours wore on earth (D) time man hes been on earth.
3. A lunar eclipse cen occur only when (A) tho oarth is between the sun and the moon (B) the moon is botween the earth and the sun (C) the sun is betweon the moon and the earth (D) there is a new moon.
4. The conservation-of-energy principle rofers to the fact that (A) it is essential not to weste natural gas and oil, for thoso aro limited in supply (B) solar heating makes use of the sun's energy, which would otherwisa bs wast d (C) energy can be neither created nor dastroyed (D) nuclecr-power plants recycle spent fusl.
5. The splitting of an atomic nucleus into two large frogments and soveral smaller particles is known as (A) fusion (B) alphe decay (C) fission (D) thermonucloar onergy.
6. Atoms are believed to be composed of (A) protons, neutrons and electrons
(B) protons and electrons (C) positrons, neutrinos and electrons
(D) protons and antiprotons.
7. The period of revolution of the moon about the earth is approximately (A) one hour (B) ane day (C) one month (D) one yaar.
8. Identify the non-astronomical objects (A) whits spots and red midgets (B) white dwarfs and black holes (C) quasars and supernovee (D) neutron stars and galaxies.
9. A planet that is nevar visible to the naked eye is (A) Mercury (B) Venus (C) Mars (D) Noptune.
10. The chain reaction that forms the basis of the atomic bomb was first achieved by a group directed by (A) Albert Einstein (B) Niels Bohr (C)Edward Teller (D) Enrico Formi.
11. The gravitational force betwoen two spherical objects is known to be inversely proportional to the square of the distance between their centres. If that distance is made three times as large, the gravitational force will be (A) three times as small (B) nine times as small (C) two times as small (D) three times as large.
12. Who did not make fundment 1 contributions to the science of electricity? (A) Charles Coulomb (B) Michael Faraday (C) Benjamin Franklin (D) Isaac Nowton.
13. The Big Bang is related to (A) the hydrogen bomb (B) the maximum noise level in an amplifier (C) a theory of the origin of tho univurse (D) supersonic aircraft.
14. Nuclear physics does not deal with (A) alpha particles (B) beta rays (C) deuterons (D) deoxyribonucleic acid.
15. Radiocarbon dating is a technique by which (A) persons who might get along well together are identified by computer (B) the fading of carbon copies is used to discover the age of documents (C) the age of archaeological artefacts is measured (D) the length of time that a patient has had cancer is determined.
16. A laser is not (A) a source of light that can be focused te a tiny area (B) a device concoived by Jules Verne for propelling a man to the moon (C) employed in some delicate eye operations (D) a device that was used to measure the distance to the moon.
17. Light (A) con travel in a vacuum (B) can travel at infinite speed (C) always travels in lines that are perfectly straight (D) cannot travel through solid objects.
18. A rocket moves because (A) its shape permits air to support it (B) it hes exceptionally powerful propellurs (C) it weighs less than the air it displaces (D) it pushos against its own exhaust.
19. The speed of sound (in air at sea level) is most nearly (A) three metres per second (B) 300 motres per second (C) 3000 metros por second (D) 300,000 kilometres per second.
20. Newton's three laws relato to (A) electricity (B) atomic physics
(C) heat (D) motion.
21. A hologram is (A) a rapid means of communic tion (B) a slide that can be used to produce throe-dimensional imeges (C) an atom smasher (D) a future mode of transportation.
22. The "Red Planet" is (A) Saturn (B) Venus (C) Sputnik (D) Mers.
23. A half-life is (A) a molecule that cannot be classud as definitely organic or definitely inorganic (B) half the avorage lifo expectancy of a group of people (C) the time for half a givon amount of radioactive material to decay (D) the radiation doso that will be lethal to half the subjects in an experiment.
24. Give the proper order of the names Archimedes, Coparnicus, Einstein, and Galileo so that they correspond to these statements:

- The first to view the moons of Jupiter through a telescope.
- Showed the equivalence of mass and energy.
- Stated that a floating body displaces a volume of water the weight of which equals the woight of the body.
- Stated that the sun, not tho oarth, is at the centre of the solar system.
(A) Archimedes, Einstein, Galileo, Copurnicus
(B) Copernicus, Einstein, Archimedes, Galileo
(C) Copernicus, Archimedes, Galileo, Einstein
(D) Galileo, Einstein, Hrchimedes, Copernicus.

25. A topic not likely to ariso in SALT talks is (A) NaCl (B) ICBM (C) MIRV (D) $\mathrm{B}-1$.

FOR M,THS I STUDENTS

Maths I students are studying functions of two variables in the Calculus course. Here is such a function discovared by Ralph Baer earlier this year, called The Baer Tit Function denoded by $B(x, y)$,

$$
\begin{aligned}
B(x, y)= & \max \left(0, \cos r+\min \left(0.25, \frac{1}{5 \frac{1}{2}} e^{-\frac{r^{2}}{4}}\right)\right)+0.05 d \cos 20_{r} \\
\text { where } r= & \sqrt{x^{2}+y^{2}} \\
d= & (1 \text { if }-15 \leqslant r<15 \\
& (0 \text { otherwise } .
\end{aligned}
$$

The most interesting point about this function is the absolute maximum on the domain.

A graph of $z=B(x, y)$ will be posted in room 56 , on the Maths Department notice board (perheps), and is available from any disreputable newsagent.

QUAINT QUOTES.

Sign outside a Calcutta heirdressing salon;
"Going grey and looking old? Come to us for dying."
-Sonali Bose
A perfectionist is a person who cannot find a solution to any problem, but can find a problem in every solution.

1. South Australia
2. Termination
3. Contact latters - P\&I Chem.
4. Holy \qquad !
5. Photo \qquad
6. Gold
7. Freposition/conjunction
point of water $=100^{\circ} \mathrm{C}$
8. Cynthia is the \qquad officer
9. Id est
10. The devil (not referring to a member of ausca.)
11. Prosident Trengove

* Collection of $\mathrm{H}_{2} \mathrm{O}$ molecules (or an undesirable character)

24. Beginning of a human

Type of chemistry
38. to wander
30. negative answer
34. a type of dog
32. \qquad is stranger than (science) fiction
-34. opposite to down
5. to leave
36. Consumod
2. What scientists (and others) receive when they've retired
39. Tin
(* Is the jusclaposition or Liese two clues significant? - Editor)
Soe next page for solutions of the crossword in the last edition of the bullntin.

On Toads and Politicians.

An intrepid group of about twenty munched at lunch while Mr. Mike Tyler gave a short dissertation on the subject of Bufo marinus, the Cane Toad. Rolls of mirth burst ovor the multitudes assembled in the South Dining Room, as the story of this much maligned, and much preserved amphibian's role in one of the twentieth century's most prolonged ecological controversies was related.

Mr. Tyler's role in this saga was received with raucous laughter from the back stalls, as we heard of borrowed fire engines at Perth firport; and the thrill of speaking, to the chorus of croaking toads lost in air cargo terminal, on 140 radio stations across Canada.

The role of Queensland Premiers past in the tale of the Toad did nothing to dispel rumours about the origin and nature of the present incumbent of that post, while the comion sense of certain wildlife Directors was questioned somewhat.

Over all the talk was well roceived, and the people present expressed their thanks to Mr. Tyler with a solid round of applause. The Association is grateful to Mr. Tyler for consenting to give our first organized talk for the year, and it is hoped that many more of a similar nature will follow.

Paul Moritz.

Quaint Quotes

Secretary: "and when I asked him if he wanted the carbon double spaced too, he really blew his top:" - Tom Ewell
"The man who can smile when things go wrong has probably just
thought of someone he pan blame it on." - E. Freeman

